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Introduction
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Introduction

What is polynomial chaos theory?
It provides a non-sampling based method to determine evolution of uncertainty in
dynamical system, when there is probabilistic uncertainty in the system parameters.

Consider a dynamical system
m &= —ax, x(tg) = xg is given (known)

m a is an unknown parameter in the range [0, 1] (equally likely values)

Polynomial chaos theory helps us answer these questions

m How does z(t) evolve for various values of a?

m What is the ensemble behavior of = (mean, variance, PDF)?
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Monte-Carlo Approach

Summary of Steps

mi=—ax, z(tg) =1

m a is an unknown parameter in the range [0, 1] (equally likely values)
m Sample a € [0, 1]

m Plot z(t) for every value of a

m Estimate statistics from data

State Trajectories

1.0
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Monte-Carlo Approach

Solution Interpretation

State Trajectories Evolution of moments of (1)

Evolution of state PDF

= e \
— t=1s 1=20s

(a) Sample paths (b) Moments
Figure: Solution from Monte-Carlo simulations

The solution z(t) depends on parameter a
More appropriate to write it as x(¢, a)
Solution statistics are time varying

State PDF is also time varying

Other methods to characterize z(t,a)?

‘ Intelligent Systems Research Laboratory
Dep

(c) state PDF

4/54



Introduction
000e

Polynomial Chaos

Basic Idea

m Approximate x(t, a), solution of & = —ax as
i(t,a) ~ in(t)¢i(a)
i

m ¢;(a) are known polynomials of parameter a
m x;(t) are unknown time varying coefficients
m Determine z;(t) that minimises equation error e(t,a) = & —ai

» Galerkin Projection: minimize ||e(t, a)||2
» Stochastic Collocation: set e(t,a) = 0 at certain locations

m Resulting system

» is in higher dimensional state space
» doesn't involve parameter a
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Galerkin Projection
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Stochastic Finite Element

Generalized Formulation
m Let system be
= f(x,A),

where state € R™ and parameter A € Da C R?
» More precisely, A := A(w) is a R%-valued continuous random variable
» w is an event in the probability space (92, F, P)
m A second order process x(t, A(w)) can be expressed by polynomial chaos as

z(t, Aw)) = > @i(t)pi(A(w))
=0

m In practice, approximate with finite terms

x(t,A) ~

N

B(t,A) = xi(t)pi(A)

=0
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Reduced Order System

1.

Dynamics
T = f(a:, A), (n differential equations)

. Proposed solution

N
z(t,A) = Z$z‘(t)¢z‘(A)
i=0
Residue )
e(tv A) = — f(CAC, A)
. Set projection on basis function to zero (best £ solution)

<€(t, A)a ¢Z(A)> =0, for i = 0,1,--- 7N

This gives n(N + 1) ordinary differential equations to determine n(N + 1)
unknowns x;(t) € R"
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Galerkin Projection
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Inner product

Define
(et A), §i(A)) = /D e(t, A)ji(A)p(A)A,

where p(A) is the probability density function of A.

Also

Ee(t, A)6i(A)] = /D e(t, A)pi(A)p(A)dA

Therefore,

(e(t,A), ¢i(A)) = Ele(t, A)gi(A)]
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Galerkin Projection
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Basis Functions

Basis functions are such that
E[¢i(A)p;(A)] =0, when i # j

i.e. orthogonal w.r.t p(A)

| 0@, (8)p(8)as =0, when i #

Distribution Polynomial Basis Function  Support
Uniform: % Legendre x € [—1,1]
Standard Normal: \/%67%%2 Hermite x € (—00,00)
Beta: B(aﬁ)x“_l(l —z)B-1 Jacobi x € [0,1]
Gamma: % Laguerre z € (0,00)
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Galerkin Projection
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Basis Functions (contd.)

In general
m {¢;(A)} are orthogonal polynomials with weight p(A)

m Lo exponential convergence in corresponding Hilbert functional space
m Askey scheme of hypergeometric polynomials for common p(A)
— Normal, uniform, beta, gamma, etc

m Numerically generate for arbitrary p(A):
— Gram-Schmidt
— Chebyshev
— Gauss-Wigert
— Discretized Stieltjes
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Galerkin Projection
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Basis Functions (contd.)

Mixed Basis Functions
mlet A= [Al AQ]T, A1 Ay are independent
— Ay is uniform over [—1, 1]
— Ay is standard normal over (—oo, 00)
m What is the basis function for A?
m {¢i(A)} is multivariate polynomial
— {¥;(A1)}: Legendre polynomials

- {01(A2)}: Hermite polynomials
— {#i(A)}: tensor product of {¢;(A1)} and {0x(A2)}
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Galerkin Projection
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Example: First Order Linear System

Consider system @ = —ax, where a € U 1] (uniform distribution)
1. Define a(A) := §(1+A), A €Uy
Now dynamics is & = —a(A)x.

2. Approximate solution as & = Ez]\;(] xL(t)gbL(A) (¢; are Legendre polynomials)

3. Residue:
e(t,A) := i — a(A)z
N N
= Z () pi(A) — a(A) Z zi(t)¢i(A)
=0 1=0

13 /54



Example: First Order Linear System (contd.)

4. Project residue on j basis function:

{e(t, A), <Zw > - <a(A)Zm(t)¢>i(A),¢j(A)>
i=0

= ;m(tmm 65(2)) — ém(txam)wm), 6;(D))
5. 1 (6:(A), b5 (A)) = 0 for i # j (orthogonal)

(e(t, A), 65(A)) = iy (65 (A Zx (D), 65(A))
6. (e(t,A), $;(A)) = 0 implies
TR Zx (A),65(2))

Ty =

7. This gives use N + 1 ordinary differential equations (x ¢ & in this example)
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Example: First Order Linear System (contd.)

The equation

5 = 5.5 2 mi(t)alA)d: )
in more compact form
AL e A At oAl [
Define @y, := (xg 1 - rn)T, then
Tpe = Apc®pe

where

(a(A)po, o) -+ (a(A)pn, o)

Ape = W1 : : , W := diag (¢, ¢0) - (dn,én))
(a(A)go,on) -+ (a(A)on, dN)
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Galerkin Projection ollocation
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Reduced Order System

Therefore
. Polynomial Chaos
Tr = —CL(A)$ e E— Lpc = Ap(;a:pc
N———
stochastic in R deterministic in RV +1

In general

Polynomial Chaos

= f(x,A) ——————  xpc = Fpe(Tpe)
— —_—

stochastic in R™ desarmiinisie in meCVEED)

o
where ;. := : and £ = Z o xi(t)di(A)
TN

A&M | Intelligent Systems Research Laboratory 16 /54



Galerkin Projection
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Initial Condition Uncertainty

Transform uncertainty in dynamics as

&= f(z,A) M) Tpe = ch(a:pc)
o N
Tpe 1= : and & = Z x;(t)pi(A)
TN =0

Let I.C. uncertainty be: xy(A)

Initialize x,. as
x;i(to) := (xo(A), i(A))
Random variable A is

A Ay Ay is I.C. uncertainty
" \4A,/’ A, is system parameter uncertainty

Basis functions ¢;(A) are defined w.r.t A
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Galerkin Projection
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Linear Systems

Consider Linear System

@ = A(A)z, with @(to) = @o(A), and A i= @2)

m System has random parameters in A matrix and |.C.
mzcR”and A cR?
m Define basis function vector ®(A) := (¢(A)--- dn(A))T

m Approximate solution is
N
Z 331¢z X(I)(A)a
i=0

X = [w() Ty - ZEN] S RnX(N—H)
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Galerkin Projection
00000000000008000000000000000000

Linear Systems (contd.)

Approximate solution

z=XP(A), X =[xogx1 - N]

Define
xo
xp. = vec(X) =
TN
Therefore,
vec(z) = vec(XP)
& = (BT @I,)Tpe  vec(ABC) = (CT ® A)vec (B)
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Galerkin Projection
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Linear Systems (contd.)

Residue

e(t,A) = - A(A)z=XP(A)-AAX

vec(e)=e = vec (X(I)(A) - A(A)XtI)(A))
= (" In)dpe — (‘I’T(A) ® A(A)) Lpc

(e, i(A)) =0 implies
i = ((6:(A), 0:(A)) @ 1) ™ (BT(A) & A(A), 6:(A)) e
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Linear Systems (contd.)

Deterministic linear dynamics

Tpe = Apc Tpe

Recall

Tpe € R”(:‘\ } L)wAp« c H{n(l\ 1) xXn(N-+1)
A, is defined as

(8T ® A(A), ¢o)
Ay :=(WaI,)™! :
(BT @ A(A), ¢n)

W = diag ({¢0, o) - (ON,PN))
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Computation of Mean
Given z(A) := X ®(A)

E[z(A)] = E[X®(A)]
= XE[®(A)]
= X(10---0)7

= mo

Also

E[z(A)] = E[(®" @ L)zy] = (E[®T] @ L) pe = (F' @ L) @pe

where FT' = (10 --- 0).
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Galerkin Projection
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Computation of Variance
Given z(A) := X®(A)

z(A)zT(A) = XeN)dT(A)XT
T

E[z(A)z"(A)] = E[X®(A)2T(A)XT]
= XE[®(A)®@T(A)] XT
(b0, Po) 0 0
_ x 0 (¢1,:¢1> 0 e
0 0 .. {on, ON)
= Xwx7’

Then
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Introduction Galerkin Projection S ic C Expansion
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Computation of Statistics -- summary

Ejz] = XF =«

Variance

Var [z] = X(W — FFT)XT

where
1 (o, Po) 0 . 0
0 0 (b1, ¢1) 0
F=E[®A)] = : W=E [@@T} - | _
0 0 O <¢N;¢N>
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Polynomial Nonlinearity

Polynomials 2™ (A), x € R can be written as

z"(A) = (X@(A))"
(@"(A), ¢i(A)) = (X B(A))", ¢1)

N N
Z Z s, (G Bi s i)

m Essentially integration of polynomials

» analytical or numerical (exact).

m Inner product (¢;, - - i, , Di)

» can be computed offline
> stored in sparse, symmetric tensor

25 /54



Galerkin Projection
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Rational polynomials

Functions such as ym((ﬁ)), z,y € R can be approximated as

(A
H4) = y"(A)
(Xe(A)"
22 = vea)”
(Y®)"Z® = (XP)"
<(Y(I))mZ(I)a¢z)>:<(X<I)> l>7 i:{()vl?"'vN}

Given X, Y solve system of linear equations to obtain Z

<<I’T ®(Y®)™, ¢0> (X@)", ¢o)
Zpe = Polynomial integrations
(@" @ (Y®)", ¢n) (X®)™, én)
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Galerkin Projection
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Transcendental Functions

Let f(x) be a transcendental function:
meg 2% e /% log(x),sin(z), etc.

Use Taylor series expansion about mean
m Define z := x¢g + d, d is deviation from mean x

m Expand
2

F(x) = fzo +d) = flzo) + f'(z0)d + f”(xo)% L

N
mz(A) =1+ Z z;9i(A)
i=1

N

d(A)
m Therefore
(F@(A)). 6:(A)) ~ Flzo)(L.60) + F@o)id. o) + T @2 ) 4.
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Galerkin Projection
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Transcendental Functions (contd.)

Taylor Series Approximation

f"(x0)

2 6) 4

(f(z(A)), ¢i(A)) = f(zo)(L, ¢i) + f'(wo)(d, ) +

m (d", ¢;) is integration of polynomials

m Straightforward

m Computationally efficient

m Severe inaccuracies for higher order PC approximations

Remedies
m Approximate f(x) using polynomials, piecewise polynomials

m Non-intrusive: multi-dimensional integrals via sampling, tensor-product
quadrature, Smolyak sparse grid, or cubature

m Regression Approach: Lo optimization
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Galerkin Projection
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Example: First Order Linear System

Dynamics:

Analytical Statistics:

o 5 10 i 20 25 5 10 i 20 25
Time Time

(a) Mean. (b) Variance.

Figure: Errors in estimates obtained from gPC for & = —a(A)z. Analytical: (red solid); gPC: 2™¢ order(*), 37¢
order(o), 5t (+).

TEXAS A&M | Intelligent Systems Research Laboratory 29 /54
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Errors Due to Finite Terms
Dynamics:
T = —(I<A)[L', a € U[O,l]

Analytical Solution:
z(t, A) = x(tg)e D)

PC Solution: I
Bt A) =) wi(t)gi(A)
=0

Error: Finite term approximation of exponential.

(a) Mean (b) Variance
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Galerkin Projection
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Example: Eigen Analysis -- Linear F-16 Aircraft

0.1658 —13.1013 —7.2748(1+ 0.2A) —-32.1739 0.2780

0.0018 —0.1301  0.9276(1 + 0.2A) 0 —0.0012
A(A) = 0 —0.6436 —0.4763 0 0
0 0 1 0 0
0 0 0 0 -1

m Linearized about flight condition V' = 160 ft/s and o = 35°
m Uncertainty due to damping term Cy,
m Difficult to model at high angle of attack

m 20% uncertainty about nominal
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Example: Eigen Analysis -- Linear F-16 Aircraft

\

08 '
Y
06l M
04F

021

2
i
?
[}
!

L L L L L L )
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure: 5t Order PC ODE Eigen Values, Sampled ODE Eigen Values

h Laboratory
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Galerkin Projection
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Example: Eigen Analysis -- Linear F-16 Aircraft

L ' ' i I I I I
-1 -0.8 -0.6 -0.4 -0.2 (] 0.2 04

Figure: PC eigen values bounded by convex hull of sampled ODE eigen values (conservative!)*

* Eigenvalues of the Jacobian of a Galerkin-Projected Uncertain ODE System, Sonday, et al.
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Example: Spread of Spectrum -- Linear F-16 Aircraft

\ P=1 on \ P=2 os \ P=3
02 oz

04 02 ° 02 04 g 08 06 o 02 04 Kl o8 e 04 02 ° 02 04
\ P=4 o \ P=8 os \ P=10
o6 o
os o
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Example: Nonlinear System -- Lorenz Attractor

Dynamics:
t=o(y—uz),

Initial Condition:

[,y,2)" =

Parameters:
o=10(1+0.1A;),

P
A) =Y wi(t)ei(A)

=0

P
y(t, A) = D wi(t)pi(A)

P

~ Y zi(t)si(A)

=0

2(t, A)

y=a(p—2)—y, i =ay - B

[1.50887, —1.531271, 25.46091]"

= 28(1 + 0.1A2)7 b= 8/3, A € Z/{[_LHQ.
: P

(@R)ER(t) =D (ohidr) (v — )
1=0
r P P

B0 Uk(t) = D (pdidw)wi — > > (¢idjbr)izj — (H7)vk
=0 i=0j=0

(r)2k(t) = ZZ Gidjbr)Tiy; — BOR) 2k

=0 7=0
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Example: Nonlinear System -- Lorenz Attractor

Integrals:
(6n(A)?) m analytical
(0(A)pi(A)pi(A)) m numerical
(p(A)ps (A)pr(A)) » non intrusive (blackbox)
(6i (A)p; (A)dp(A)) » quadratures defined by roots of ¢ (-)
‘ » tensor product of univariate quadratures
ul P Here we use 7%" order PC approximation
ol P> Highest order polynomial integrated is 21 in (¢;(A)¢; (A)dr(A))
ol > N =11 will exactly integrate polynomials of order < 22;i.e.
- (:(8); (A)B(A)) = D" wrdi(Ar)d; (Ar)dr(Ar)
0 > Approximate for non polynomial integrands
02 » Multidimensional moments can be computed efficiently from
o1t 1 products of one dimensional moments

% multivariate ¢;'s are tensor products of univariate functions
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Example: Nonlinear System -- Lorenz Attractor

MC: 1000 samples PC: 7" order approximation
m using MATLAB rand(...) m 36 basis functions

Mean Trajectories

20 ! ! ! .
—r
10 ——Mc
S0
_10F |
20 , . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
t
20 .

& 30

TEXAS A&M | Intelligent Systems Research Laboratory
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Stochastic Collocation
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Basic Idea

m Sample domain DA suitably

» roots of basis functions — ¢(A) same as Galerkin projection
» multi-dimension samples < tensor product of roots or sparse grid

m Enforce stochastic dynamics at each sample point
» Time varying coefficient at each sample point

m Interpolate (Lagrangian) for intermediate points

| Intelligent Systems Research Laboratory 39/54
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]
Algorithm

1. Given stochastic dynamics with uncertainty A
z=f(x,A)

2. For pt" order approximation:
» sample domain Da with roots of p 4+ 1 order polynomial
» tensor grid, sparse grid, etc.
» samples A :={A;},i=0,---,p.

3. Coefficient x; evolves according to
xT;, = f(CL‘Z, AZ), deterministic solution

4. Approximate stochastic solution »

E(t,A) =) xi(t)Li(A)

1=0

L; are Lagrangian interpolants L;(y) = Hﬁfo ki ;":%{j
Y, K3 J

TEXAS A&M | Intelligent Systems Research Laboratory 40 /54
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Stochastic Collocation
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Computation of Statistics

m Mean

Elz(t)] ~ E [Z $i(t)Li(A)] = Z z;(t)E [Li(A)]
=0 ‘

m Computation of E[L;(A)] involves high-dimensional polynomial integration

> analytical
» numerical: quadratures, sparse grids, etc

m Higher order statistics: similar to computation of mean.
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Example: Linear First Order System

Dynamics:

Analytical Statistics:

$\bar{x}$

02 \ 02|
o1 M%\ o1
- s

o s 1 15 2 B o o 5 10 15 20 2 £l
$t$ t

(a) MC (3 samples) (b) SC & Galerkin (37% order)
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Example: Nonlinear System -- Lorenz Attractor

Dynamics:

i=o(y—uz), y=z(p—2)—vy, i =y — Pz
Initial Condition:
[z,y,2]" = [1.50887, —1.531271, 25.46091]"
Parameters:

o =10(1+0.1A;), p=28(1+0.1A,), B =8/3, AUy qp.

Mean Trajectories

m MC: 1000 samples
» using MATLAB rand(...)

M m SC: 11 quadrature points

» same as 7t order PC
; ' » 121 grid points in 2D

s N A . : m SC performance is poor for

I B S e nonlinear systems!
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Stochastic Collocation
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Example: Nonlinear System -- Lorenz Attractor

Mean Trajectories

20 ; : : ; :
10F B
A\
5 o | V- U— pc-7
= \ —— MC-1000
_10F ——sc-11 |
MC-121
0 . . . . . . . :
1 2 3 4 5 6 7 8 9 10
t
20 ; : : :
0 W —
IS ’4\\/&
2o} |
0 . . . . . . . . .
1 2 3 4 5 6 7 8 9 10
t
50 T
40 R
& 30 4
[ === S A
2f | Y B
N o Y
) 1 2 3 4 5 6 7 8 9 10

SC performance is poor for nonlinear systems!
But, better than MC with same sample budget.

TEXAS A&M | Intelligent Systems Research Laboratory
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Karhunen-Loéve Expansion
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Basic Idea

Given a random process X (t,w) := { X¢(w) }re(ty 10]
] Xt(w) S LQ(Q,.F, P) finite second moment
— Lo F,P):={X:Q—R: [ |X(w)]?dP(w) < oo}
m Auto Correlation
Rx(t1,t2) := E[Xy, Xy, ]

m Auto Covariance
Cx(t1,t2) = Rx(t1,t2) — ity pit,
= RX (tl, tg) — u2 stationary

m Cx(t1,t2) is bounded, symmetric and positive definite, thus

[e.e]
CX (tl, tg) = Z )\zfz (tl)fi (tg) spectral decomposition
i=0
where \; and f;(-) are eigenvalues and eigenvectors of the covariance kernel.
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Karhunen-Loéve Expansion
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Eigenvalues and Eigenfunctions

m )\; and f;(-) are solutions of

/ CX (tl, tg) fi(t) dtl = Ai fi(tg), Fredholm integral equation of second kind
D
with / fl(t)fj (t)dt = (SZ]
D
m Write X (¢t,w) := X(t) + Y (t,w), where

w) Zgz )V Ai fi(t), and &(w / Y (t,w)fi(t)

m Reproducing Kernel Hilbert Space
» Congruence between two Hilbert spaces!
» {fi(t)} — X (t,w) or equivalently

> {fi(0)} = {&(w)}

47 /54



Karhunen-Loéve Expansion
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Solution of Integral Equation

m Homogeneous Fredholm integral equation of the second kind,

/ CX (tl, t2) fl(t) dtl = /\z fi(tg) well studied problem
m Cx(t1,t2) is bounded, symmetric, and positive definite, implies
1. The set f;(t) of eigenfunctions is orthogonal and complete.

2. For each eigenvalue Ay, there correspond at most a finite number of linearly
independent eigenfunctions.

3. There are at most a countably infinite set of eigenvalues.
4. The eigenvalues are all positive real numbers.
5. The kernel Cx (t1,t2) admits of the following uniformly convergent expansion

Cx(t1,t2) ZAfztl ) fi(t2)

=0

m Applicable to wide range of processes

h Laboratory 48 /54



Karhunen-Loéve Expansion
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Rational Spectra: Special Case

m 1D random process

m Stationary output of a linear filter, excited by white noise
Filter 10Hz

"1
White noise
m Spectral density of the form S(s?) = H(jw)H(—jw) = D)

N and D are polynomials in s2 such that

Filtered noise

oo > Degree of D(s2) must exceed degree of N(s2) by
/ S(—w?)dw < oo at least two.
J—oo

> No roots of D(s?) on the imaginary axis
= jw, here w is f
57 Jwn here wiis frequency > S(w) >0, = purely imaginary zeros of N(s?) of
even multiplicity
m Finite dimensional Markovian process

» effect of infinite past on the present is negligible

TEXASN @&M ‘ ‘Intelhgent Sysfgnws Research Laboratory 49 / 54



Karhunen-Loéve Expansion
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Important Kernel

Study specific kernel
Cx(t1,t2) = e~ 17"

1/c is the correlation time or length.
m Many applications.
m Other kernels also possible
Solve integral equation

/DCX(tLtQ) fi(t) dty = N; fi(t2).

Or equivalently solve
ODE: f(t) +w?f(t) =0, w?="—"2 —a<t<a
Boundary Condition: cf(a) 4+ f(a) =0, cf(—a) — f(—a) =

50 /54



Karhunen-Loéve Expansion
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Basis Functions

Equivalently solve for w, w*

Odd :
c—wtan(wa) =0, \; =

cos(w;t)

fi(t) =

sin(2 i
\ 70, + slnghn;:),a)

Eigenvalues \;

Even ¢

2c
w* + ctan(w*a) =0, \f = —5——
wi” + c?
sin(w;'t)
sin(2w?a)
B 2w}

a) Eigenvalues

TEXAS A&M | Intelligent Systems Research Laboratory
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(b) Eigenfunctions
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Coefficients
Recall X(t, UJ) = X(t) + Y(t, OJ), w here is an event in the probability space (2, F, P)

Y(tw) ™Y Gilw)VN filh)

1=0

=3 [G@VA S0 + & @V ()]

=0

w) are uncorrelated random variables determined from Y (¢, w)

u gi(w)a 5:(
m §i(w), & (w) model the distribution of amplitude of Y (¢, w)
m fi(t), f7(t) models the distribution of signal power over time or among frequencies

If Y(t,w) is a Gaussian process
m {(w), & (w) Gaussian independent random variables

m KL — expansion is almost surely convergent
52 /54
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UQ Application

Dynamical system with process noise n(t,w)
&= f(t,A,z)+n(t,w)

Replace

n(t,w) = 3 [G@)VA FiD) + €@V £ 0]

N
=0

Define new parameter vector

* * T
A/ = (ATagouf(]v e 7€N7€N)
Rewrite dynamics as
i=F(t A ),

Process noise converted to parametric uncertainty.
m Use PC, SC, or simplified FPK equation to determine z(t, A’)
m Increases number of parameters = increases computational complexity
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